Answer:
Step-by-step explanation:
SLOPE FORMULA:
[tex]\Rightarrow \displaystyle \mathsf{\frac{Y_2-Y_1}{X_2-X_1} }}[/tex]
Y2=(-3)
Y1=5
X2=(-3)
X1=(-6)
Solve.
[tex]\displaystyle \mathsf{\frac{-3-5}{-3-\left(-6\right)}=\frac{8}{3}=-\frac{8}{3} }}}[/tex]
Then, compute by the y-intercept.
SLOPE INTERCEPT FORM FORMULA:
[tex]\displaystyle \mathsf{Y=MX+B}}[/tex]
y=(-8/3)x+b
(-6,5)
X=(-6)
Y=5
5=(-8/3)(-6)+b
Isolate b on one side of the equation.
(-8/3)(-6)+b=5 (Switch sides.)
Remove parenthesis.
8/3*6+b=5
8*6/3
Multiply.
8*6=48
Divide.
48/3=16
16+b=5
b+16=5 (Switch sides.)
Then, subtract 16 from both sides.
b+16-16=5-16
Solve.
5-16=-11
b=-11
So, the correct answer is y=-8/3x-11.