Respuesta :

Answer:

[tex](r\cdot s)(x)=3x^3-3x^2[/tex]

[tex](r+s)(x)=3x^2+x-1[/tex]

[tex](r-s)(-3)=-31[/tex]

Step-by-step explanation:

[tex](r \cdot s)(x)[/tex] means we are multiplying the functions mentioned.

[tex](x-1)(3x^2)[/tex]

Distribute:

[tex]3x^3-3x^2[/tex]

-------

[tex](r+s)(x)[/tex]

This means we are adding the mentioned functions.

[tex](x-1)+(3x^2)[/tex]

No like terms to combine so we are going to rearrange in standard form:

[tex]3x^2+x-1[/tex]

----

[tex](r-s)(-3)[/tex]

Replace the x's in both functions with -3, then we will simplify the difference of [tex]r(-3)[/tex] and [tex]s(-3)[/tex].

[tex]r(x)=x-1[/tex]

[tex]r(-3)=-3-1=-4[/tex]

[tex]s(x)=3x^2[/tex]

[tex]s(-3)=3(-3)^2=3(9)=27[/tex]

So now we do -4-27=-31.

Q&A Education