Respuesta :

Answer:

The perimeter of ∆ABC is [tex]P=14.35\ units[/tex]

Step-by-step explanation:

see the attached figure to better understand the problem

we know that

When a circle has an inscribed angle that "cuts out" a semi-circle, like the one in the attached figure, then the inscribed angle is a right angle.  so

m∠C=90°

The perimeter of triangle ABC is equal to

[tex]P=AB+BC+AC[/tex]

[tex]AB=2r=2(3)=6\ units[/tex] ----> is equal to the diameter of the circle

Find the length side AC

[tex]cos(35\°)=\frac{AC}{AB}[/tex]

[tex]AC=cos(35\°)(AB)[/tex]

substitute

[tex]AC=cos(35\°)(6)=4.91\ units[/tex]

Find the length side BC

[tex]sin(35\°)=\frac{BC}{AB}[/tex]

[tex]BC=sin(35\°)(AB)[/tex]

substitute

[tex]BC=sin(35\°)(6)=3.44\ units[/tex]

Find out the perimeter

[tex]P=AB+BC+AC[/tex]

substitute

[tex]P=6+3.44+4.91=14.35\ units[/tex]

Ver imagen calculista

Answer:

For RSM students it's 14.356

Step-by-step explanation:

Q&A Education