Answer:
See explanation
Step-by-step explanation:
1. To rewrite the expression
[tex](4^{\frac{2}{5}})^{\frac{1}{4}},[/tex]
use exponents property
[tex](a^m)^n=a^{m\cdot n}[/tex]
So,
[tex](4^{\frac{2}{5}})^{\frac{1}{4}}=4^{\frac{2}{5}\cdot \frac{1}{4}}=4^{\frac{2}{20}}=4^{\frac{1}{10}}[/tex]
2. Why [tex]10^{\frac{1}{3}}=\sqrt[3]{10}?[/tex]
Raise both sides to 10 power:
[tex](10^{\frac{1}{3}})^3=10^{\frac{1}{3}\cdot 3}=10^1=10\\ \\(\sqrt[3]{10})^3=10[/tex]
So,
[tex](10^{\frac{1}{3}})^3=(\sqrt[3]{10} )^3[/tex]
3. Simplify [tex]\dfrac{3^4}{9}[/tex]
Use the Quotient of Powers Property:
[tex]\dfrac{a^m}{a^n}=a^{m-n}[/tex]
Then
[tex]\dfrac{3^4}{9}=\dfrac{3^4}{3^2}=3^{4-2}=3^2[/tex]
4. Solve [tex]4\sqrt{2}+5\sqrt{4}[/tex]
First, note that [tex]\sqrt{4}=2,[/tex] then
[tex]4\sqrt{2}+5\sqrt{4}=4\sqrt{2}+5\cdot 2=4\sqrt{2}+10[/tex]
Number [tex]4\sqrt{2}[/tex] is irrational number, number 10 is rational number. The sum of irrational and rational numbers is irrational number.
5. The same as option 4.