Respuesta :

Answer:

a: [tex]5.9743*10^{24}[/tex]

b: [tex]3.00587517*10^{5}[/tex]

Step-by-step explanation:

For a:

The combined mass is the totaled mass of all the objects.

So that would be [tex](5.9*10^{24})+(7.3*10^{22})+(1.3*10^{21})\\\\(5900+73+1.3)*10^{21}\\\\5974.3*10^{21}\\\\5.9743*10^{24}[/tex]

For b:

We need to find how many of the moon-Earth-Pluto combinations are needed to match the mass of the sun.

So, we would calculate the following:

[tex]\frac{1.7958*10^{30}}{5.9743*10^{24}} \\\\\frac{1.7958}{5.9743} *\frac{10^{30}}{10^{24}} \\\\0.300587517 (approx) * 10^{30-24}\\0.300587517*10^{6}\\3.00587517*10^{5}[/tex]

So it would take approximately [tex]3.00587517*10^{5}[/tex] of the moon-Earth-Pluto combos to match the mass of the sun.

Q&A Education