Respuesta :
Answer:
t= 5 s the particle will be on the highest position.
[tex]r(t) = 10i + 15j + 100k[/tex]
The maximum values of particle will at t= 10 s
[tex]V_{max}=10.63\ m/s[/tex]
The minimum values of particle will at t= 5 s
[tex]V_{min}=3.6 \ m/s[/tex]
Explanation:
Given that
[tex]r(t) = 2ti + 3tj + (100-(t- 5)^2)k[/tex]
Time when the particle will be on the highest position:
When the Z component of r(t) will be maximum then the particle will be on the highest position.
[tex]Z=(100-(t- 5)^2)[/tex]
[tex]\dfrac{dZ}{dt}=0-2(t-5)[/tex]
It means at t= 5 s the particle will be on the highest position.
Position at t= 5
[tex]r(t) = 2ti + 3tj + (100-(t- 5)^2)k[/tex]
[tex]r(t) = 2\times 5i + 3\times 5j + (100-(5- 5)^2)k[/tex]
[tex]r(t) = 10i + 15j + 100k[/tex]
Speed :
[tex]V=\dfrac{dr}{dt}[/tex]
[tex]V=2i + 3j -2(t- 5)k[/tex]
The maximum values of particle will at t= 10 s
[tex]V_{max}=\sqrt{2^2+3^2+10^2} \ m/s[/tex]
[tex]V_{max}=\sqrt{113} \ m/s[/tex]
[tex]V_{max}=10.63\ m/s[/tex]
The minimum values of particle will at t= 5 s
[tex]V_{min}=\sqrt{2^2+3^2} \ m/s[/tex]
[tex]V_{min}=\sqrt{13} \ m/s[/tex]
[tex]V_{min}=3.6 \ m/s[/tex]