Given: △FKL, FK=a

m∠F=45°, m∠L=30°

Find: FL
I know that I need to add an altitude from K so I can get a 45, 45, 90 triangle and a 30, 60, 90 triangle, but after that, I keep getting the answer wrong.

Given FKL FKa mF45 mL30 Find FLI know that I need to add an altitude from K so I can get a 45 45 90 triangle and a 30 60 90 triangle but after that I keep getti class=

Respuesta :

Answer:

[tex]FL= \frac{a (\sqrt{3} + 1)}{\sqrt{2} }[/tex]

Step-by-step explanation:

As given  in figure 1 below:

FK = a, m∠F = 45° and m∠L = 30°

Construction: Draw an altitude KE from point K on FL.

Now, In ΔFEK,

FE = EK (Sides opposite to equal angles of a triangle)

Let FE = EK = x  

Now, using pythagoras In  ΔFEK,

[tex](FK)^{2} = (FE)^{2} + (KE)^{2}[/tex]  

[tex](a)^{2} = (x)^{2} + (x)^{2}[/tex]

[tex](a)^{2} = 2x^{2}[/tex]

[tex]x = \sqrt \frac{a^{2} }{2} = \frac{a}{\sqrt{2} }[/tex]

∴ FE = EK = [tex]\frac{a}{\sqrt{2} }[/tex]

Now in ΔEKL, EK = [tex]\frac{a}{\sqrt{2} }[/tex]

Using trigonometry ratio,

TanФ = Altitude\ Base

[tex]Tan \theta = \frac{KE}{EL}[/tex]

Tan 30° = [tex]\frac{a/\sqrt{2} }{EL}[/tex]

[tex]\frac{1}{\sqrt{3} } = \frac{a}{\sqrt{2} EL}[/tex]

[tex]EL = \frac{\sqrt{3}a}{\sqrt{2} }[/tex]

Now FL = FE + EL

FE = [tex]\frac{a}{\sqrt{2} }[/tex] and [tex]EL = \frac{\sqrt{3}a}{\sqrt{2} }[/tex]

∴ [tex]FL = \frac{a}{\sqrt{2} } + \frac{\sqrt{3}a }{\sqrt{2} } = \frac{a (\sqrt{3} + 1)}{\sqrt{2} }[/tex]

Ver imagen tallinn
Q&A Education