Answer:
a) =(0.6116259, 0.6308137)
(b) No, because the interval does not include 0.5
Step-by-step explanation:
Given Data:
sample size, n = 9821
Sample, x = 6101
(a) sample proportion [tex]p = \frac{6101}{9821} = 0.6212198[/tex]
Given a=0.05,
so Z(0.025) = 1.96 [via. standard normal table)
So 95% confidence interval is
[tex]p \pm Z\times \sqrt{(p\times \frac{(1-p)}{n})}[/tex]
[tex]= 0.6212198 \pm 1.96\times \sqrt{(0.6212198\times \frac{(1-0.6212198)}{9821})[/tex]
=(0.6116259, 0.6308137)
(b) No, because the interval does not include 0.5