Answer:
t = √2y/g
Explanation:
This is a projectile launch exercise
a) The vertical velocity in the initial instants ([tex]v_{oy}[/tex] = 0) zero, so let's use the equation
y =[tex]v_{oy}[/tex] t -1/2 g t²
y= - ½ g t²
t = √2y/g
b) Let's use this time and the horizontal displacement equation, because the constant horizontal velocity
x = vox t
x = v₀ₓ √2y/g
c) Speeds before touching the ground
vₓ = vox = constant
[tex]v_{y}[/tex] = [tex]v_{oy}[/tex] - gt
[tex]v_{y}[/tex] = 0 - g √2y/g
[tex]v_{y}[/tex] = - √2gy
tan θ = Vy / vx
θ = tan⁻¹ (vy / vx)
θ = tan⁻¹ (√2gy / vox)
d) The projectile is higher than the cliff because it is a horizontal launch