Respuesta :
Answer:
[tex]F(t)=\frac{600*60000}{600+59400e^{-0.703*t} }[/tex]
Step-by-step explanation:
The equation will be given by
[tex]F(t)=\frac{N(0) K}{N(0)+(k-N(0))e^{-at} }[/tex]
Here N(0) ist the initial value and k is the charge capacity. Using the information of the question we have [tex]N(0) =600[/tex] and [tex]k=60000[/tex].
We need to find the a value, using the logĂstic equation:
[tex]F(1)=\frac{600*60000}{600+(60000-600)e^{-a} }=1200[/tex]
Isolating a, we have:
[tex]\frac{600*60000}{600+(60000-600)e^{-a} }=1200\\\frac{600*60000}{1200}=600+(60000-600)e^{-a}\\\frac{60000}{2}=600+(60000-600)e^{-a}\\30000=600+59400e^{-a}\\30000-600=59400e^{-a}\\29400=59400e^{-a}\\\frac{29400}{59400}=e^{-a}\\ln(\frac{29400}{59400})=-a\\-ln(\frac{29400}{59400})=a\\a=0.703[/tex]
This way the logistic equation to this problem is:
[tex]F(t)=\frac{600*60000}{600+59400e^{-0.703*t} }[/tex]
N(t) is given by this logistic equation [tex]F (t) = \frac{600 \times 60000 }{600\;+\;[60000\; - \;600]e^{-0.7032t}}[/tex]
Given the following data:
- Initial value, N(0) = 600.
- N(1) = 1200.
- Carrying capacity, k = 60,000.
To solve for N(t) assuming the limiting number of people in the community is 60,000:
What is a logistic equation?
A logistic equation can be defined as a differential equation model of population growth that is typically used to relate the change in population ([tex]\frac{dP}{dt}[/tex]) to the total population at a given growth rate (r) and carrying capacity (k).
Mathematically, the logistic equation for this community is given by this equation:
[tex]F (t) = \frac{N(0) k}{N(0)\;+\;[k\; + \;N(0)]e^{-rt}}[/tex]
Substituting the given parameters into the formula, we have;
[tex]F (1) =1200 = \frac{600 \times 60000 }{600\;+\;[60000\; - \;600]e^{-r}}\\\\\frac{36000000}{1200} =600\;+\;[60000\; - \;600]e^{-r}\\\\30000=600+59400e^{-r}\\\\59400e^{-r}=30000-600\\\\59400e^{-r}=29400\\\\e^{-r}=\frac{29400}{59400} \\\\e^{-r}=0.4950\\\\r=ln(0.4950)\\\\[/tex]
r = 0.7032.
For N(t), we have:
[tex]F (t) = \frac{600 \times 60000 }{600\;+\;[60000\; - \;600]e^{-0.7032t}}[/tex]
Read more on logistic equation here: https://brainly.com/question/25697660