Answer:
Explanation:
Given
Velocity of jet relative to the carrier[tex](v_{jc})=45 m/s[/tex]
Velocity of jet carrier to the wind[tex](v_{cw})=45 mi/hr\approx 20.1168[/tex]
Velocity of wind[tex]=20 mi/hr\approx 8.9408 m/s[/tex]
Length of runway=126 m
[tex]v_{jc}=v_j-v_c=45[/tex]
[tex]v_{cw}=v_c-v_w=20.11[/tex]
[tex]v_w=8.94 m/s[/tex]
thus [tex]v_c[/tex]=20.11+8.94=29.05
[tex]v_j[/tex]=29.05+45=74.05 m/s
to find acceleration
[tex]v^2-u^2=2as[/tex]
here u=0,v=74.05 m/s
[tex]a=\frac{v^2}{2s}=\frac{74.05^2}{2\times 126}=21.75 m/s^2[/tex]
case -2
Velocity of jet relative to the carrier[tex](v_{jc})=71 m/s[/tex]
Velocity of jet carrier to the wind[tex](v_{cw})=10 mi/hr\approx 4.4704[/tex]
Velocity of wind[tex]=5 mi/hr\approx 2.2352 m/s[/tex]
Length of runway=126 m
[tex]v^2-u^2=2as[/tex]
here u=0,v=77.7 m/s
[tex]a=\frac{v^2}{2s}=\frac{77.7^2}{2\times 126}=23.95 m/s^2[/tex]