a uniform, upward-pointing electric field E of magnitude 4.00×103 N/C has been set up between two horizontal plates by charging the lower plate positively and the upper plate negatively. The plates have length L = 5 cm and separation d = 2.00 cm. An electron is then shot between the plates from the left edge of the lower plate. The initial velocity v0 of the electron makes an angle θ=45° with the lower plate and has a magnitude of 7.86×106 m/s. Will the electron strike one of the plates? If so, what is the horizontal distance from the left edge? If not enter the vertical position at which the particle leaves the space between the plates ( m).

Respuesta :

Answer:

As the distance is greater than the separation of the electron plates collides with it

X1= 3.02 10⁻² m

Explanation:

To solve that problem we will work with Newton's second law to find acceleration and then we will use the kinematic equations

Electric force is

                  F = E q

Where E is the electric field and q the charge in this case the charge of an electron e = 1.6 10-19 C, of negative sign and its mass is 3.1 10-31 Kg

               F = ma

              -E e= m a

               a = -Ee / m

As the force is attractive it is directed on the Y axis

              a = - Ee / m j ^

              a = -4.00 10³ 1.6 10⁻¹⁹ / 3.1 10⁻³¹

              a = -2.06 10¹⁵ m / s² j ^

Let's use the parabolic motion equations to find the position of the electron at the end of the plates, let's decompose the velocities

             Vox = Vo cos θ

             Voy = Vo sin θ

             Vox = 7.86 10⁶ cos (-45)

             Voy = 7.86 10⁶ sin (-45)

             Vox = 5.56 10⁶ m / s

             Voy = -5.56 10⁶ m / s

The movement in the X axis is uniform, so we can find the time it takes to cross the plate

             X = Vox t

             t = X / Vox

             t = 5 10⁻² / 5.56 10⁶

             t = 8.99 10⁻⁹ s

 

With this time we can see how much the electron descended

            Y = Voy t - ½ a t²

            Y = -5.56 10⁶ 8.99 10⁻⁹ - ½ 2.06 10¹⁵ (8.99 10⁻⁹)²

            Y = -49.98 10⁻³ - 83.24 10⁻³

            Y = -133.22 10⁻³ m = 1.33 10⁻¹ m

In the exercise they give as data that the separation of the plates is 2.00 cm,   let's reduce the distance found to centimeters

              Y = 133.22 10⁻³ m (100cm / 1m) = 13,322 cm

As the distance is greater than the separation of the electron plates collides with it

Second Part

Let's look for the time it takes to lower the width of the plate

            Y = 2.00 cm = 2.00 10⁻² m

             Y = Voy t - ½ a t²

            -2.00 10⁻² = -5.56 10⁶ t - ½ 2.06 10¹⁵ t²

             0 = 2 10⁻² + ​​5.56 10⁶ t - 1.03 10¹⁵ t²

             1.03 10¹⁵ t² - 5.56 10⁶ t - 2 10⁻² = 0

We solve the second degree equation

            t  = 5.56 10⁶ √ [(5.56 10⁶) 2 - 4 1.03 10¹⁵ 2.10⁻²]} / (2 1.03 10¹⁵)

            t =  5.56 10⁶ ±√ [30.91 10¹² - 8.24 10¹¹]} / 2.06 10¹⁵

            t =  5.56 10⁶ ± 5.63 10⁶} /2.06 10¹⁵

            t1 = 11.19 10⁶ /2.06 1015

            t1 = 5.43 10⁻⁹ s

            t2= -0.07 10⁻⁹ s

 

We take the right time as the positive.  Let's calculate the horizontal distance

                Xi = Vox t1

                 X1 = 5.56 10⁶ 5.43 10⁻⁹

                 X1 = 30.19 10⁻³ m

                  X1= 3.02 10⁻² m

Q&A Education