Respuesta :
Answer: The value of [tex]K_p[/tex] for the reaction at 690 K is 0.05
Explanation:
We are given:
Initial pressure of [tex]COCl_2[/tex] = 1.0 atm
Total pressure at equilibrium = 1.2 atm
The chemical equation for the decomposition of phosgene follows:
[tex]COCl_2(g)\rightleftharpoons CO(g)+Cl_2(g)[/tex]
Initial: 1 - -
At eqllm: 1-x x x
We are given:
Total pressure at equilibrium = [(1 - x) + x+ x]
So, the equation becomes:
[tex][(1 - x) + x+ x]=1.2\\\\x=0.2atm[/tex]
The expression for [tex]K_p[/tex] for above equation follows:
[tex]K_p=\frac{p_{CO}\times p_{Cl_2}}{p_{COCl_2}}[/tex]
[tex]p_{CO}=0.2atm\\p_{Cl_2}=0.2atm\\p_{COCl_2}=(1-0.2)=0.8atm[/tex]
Putting values in above equation, we get:
[tex]K_p=\frac{0.2\times 0.2}{0.8}\\\\K_p=0.05[/tex]
Hence, the value of [tex]K_p[/tex] for the reaction at 690 K is 0.05
The Value of Kp for the reaction at 690 K = 0.05
Given data :
Initial pressure in the flask = 1 atm
Temperature = 690 K
Final pressure in flask = 1.2 atm
COCl₂(g) decomposes
Calculate the value of Kp for the reaction
Decomposition equation of COCl₂(g)
COCl₂(g) -----> CO₂(g) + CI₂(g)
First step : express the total pressure at equilibrium
Total pressure ; ( 1- x ) + x + x = 1.2
where x = pressure of CO₂(g) and pressure of CI₂(g)
therefore ; x = 1.2 - 1 = 0.2 atm
Where Kp is expressed as ;
Kp = [tex]\frac{pCO_{2} * pCI_{2} }{pCOCI_{2} }[/tex] -------- ( 1 )
Where ; pCO₂ = 0.2 , pCI₂ = 0.2, pCOCI₂ = 1 - 0.2 = 0.8 atm
input values into equation ( 1 )
Kp = ( 0.2 * 0.2 ) / 0.8
= 0.05
Hence we can conclude that the value of Kp for the reaction at 690 k is 0.05.
Learn more : https://brainly.com/question/17082550