Respuesta :

Answer:

f(x) is an odd function

Step-by-step explanation:

Determine whether the function f(x)=4x^3 is even or odd

[tex]f(x)= 4x^3[/tex]

To check whether f(x) is even then f(-x)= f(x)

To check whether f(x) is odd then f(-x)=-f(x)

Plug in x with -x and check whether it is odd or even

[tex]f(x)= 4x^3[/tex]

[tex]f(-x)= 4(-x)^3=-4x^3[/tex]

f(-x) is not equal to f(x). So f(x) is not an even function

[tex]f(x)= 4x^3[/tex]

[tex]f(-x)= 4(-x)^3=-4x^3[/tex]

f(-x) =-f(x)

So it is an odd function

A function can be even or odd.

[tex]\mathbf{f(x) = 4x^3}[/tex] is an odd function.

A function is said to be odd if:

[tex]\mathbf{f(-x) = -f(x)}[/tex]

The function is given as:

[tex]\mathbf{f(x) = 4x^3}[/tex]

Calculate f(-x)

[tex]\mathbf{f(-x) = 4(-x)^3}[/tex]

[tex]\mathbf{f(-x) = -4x^3}[/tex]

Calculate -f(x)

[tex]\mathbf{-f(x) = -4x^3}[/tex]

By comparison:

[tex]\mathbf{f(x) = -f(x) = -4x^3}[/tex]

Hence,  [tex]\mathbf{f(x) = 4x^3}[/tex] is an odd function.

Read more about odd and even functions at:

https://brainly.com/question/15775372

Q&A Education