Answer:
The approximate probability that the total weight of their baggage
[tex]P (\bar x >60) = 0.000[/tex]
Step-by-step explanation:
Given data;
number of passenger is 100
baggage limit = 6000 lb
standard deviation = 19 lb
mean value = 49
For 100 passengers baggage limit is 6000 lb
so, average weight for per passenger > 60
[tex]P (\bar x >60)[/tex]
As mean value is 49, therefore [tex]P (\bar x >60)[/tex] lie on right side center
z is given as
[tex]z = \frac{ \bar x \mu}{\sigma_{\bar x}}[/tex]
[tex]z = \frac{60 - 49}{\frac{\sigma}{\sqrt n}}[/tex]
[tex]z = \frac{60 - 49}{\frac{19}{\sqrt {100}}} = 5.79[/tex]
[tex]P(Z>5.79) = AREA to the right of 5.79[/tex]
[tex]P (\bar x>60) = P (Z>5.79) = 1 -P (Z < 5.79)[/tex]
= 1 -P (Z < 5.79)
= 1 - 1.0000
= 0.000
[tex]P (\bar x >60) = 0.000[/tex]