Answer:
ΔP=19.76 KPa
[tex]\Delta m=10^{-3}\ gm[/tex]
Explanation:
Given that
[tex]T_1= 25C, Â P_1= 210 \KPa \gauge[/tex]
atmospheric pressure = 100 kPa.
So absolute pressure = Atmospheric pressure + gauge pressure
[tex]P_1=210+100\ KPa[/tex] (absolute)
[tex]P_1=310\ KPa[/tex] (absolute)
Here volume of air is constant .We know that for constant volume pressure
[tex]\dfrac{P_1}{T_1}=\dfrac{P_2}{T_2}[/tex]
here
[tex]T_2= 44C[/tex]
[tex]T_1=273+25=298K[/tex]
[tex]T_2=273+44=317K[/tex]
[tex]\dfrac{P_1}{T_1}=\dfrac{P_2}{T_2}[/tex]
[tex]\dfrac{310}{298}=\dfrac{P_2}{317}[/tex]
[tex]P_2=329.76\ KPa[/tex] (absolute)
So rise in pressure
[tex]\Delta P=P_1-P_2[/tex]
ΔP=329.76-310 KPa
ΔP=19.76 KPa
[tex]m_1=\dfrac{P_1V}{RT_1}[/tex]
[tex]m_1=\dfrac{310\times 0.025}{0.287\times 298}[/tex]
[tex]m_1=0.090615\ kg[/tex]
[tex]m_2=\dfrac{P_2V}{RT_2}[/tex]
[tex]m_2=\dfrac{329.76\times 0.025}{0.287\times 317}[/tex]
[tex]m_2=0.090614\ kg[/tex]
Δm=0.090615 - 0.090614 kg
[tex]\Delta m=10^{-3}\ gm[/tex]