Answer:
The next two terms of the sequence are 20, 10
Solution:
The geometric equation is 160, 80, 40…..
The first term of the equation is[tex]a_{1}=160[/tex].
Now the ratio between the numbers of the sequence [tex]r=\left(\frac{80}{160}\right)=\left(\frac{1}{2}\right)[/tex]
As we know that the nth term of the sequence [tex]a_{n}=a_{1} \times r^{n-1}[/tex]
Hence,
[tex]a_{4}=160 \times\left(\frac{1}{2}\right)^{4-1}[/tex]
[tex]\rightarrow 160 \times\left(\frac{1}{2}\right)^{3}[/tex]
[tex]\rightarrow160 \times\left(\frac{1}{8}\right) = 20[/tex]
[tex]\mathrm{a}_{5}=160 \times\left(\frac{1}{2}\right)^{5-1}[/tex]
[tex]\rightarrow160 \times\left(\frac{1}{2}\right)^{4}[/tex]
[tex]\rightarrow160 \times\left(\frac{1}{16}\right) = 10[/tex]