Respuesta :
Answer:
For A: The mass of iron (III) sulfate is 600. g
For B: The moles of ammonium carbonate is 0.07216 moles
For C: The mass of given number of molecules of aspirin is 0.359 grams.
For D: The molar mass of diazepam is 284.7 g/mol
Explanation:
To calculate the number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex] .....(1)
- For A:
We are given:
Number of moles of iron (III) sulfate = 1.50 mol
Molar mass of iron (III) sulfate = 399.9 g/mol
Putting values in equation 1, we get:
[tex]1.50mol=\frac{\text{Mass of iron (III) sulfate}}{399.9g/mol}\\\\\text{Mass of iron (III) sulfate}=(1.50mol\times 399.9g/mol)=600.g[/tex]
Hence, the mass of iron (III) sulfate is 600. g
- For B:
We are given:
Mass of ammonium carbonate = 6.935 g
Molar mass of ammonium carbonate = 96.1 g/mol
Putting values in equation 1, we get:
[tex]\text{Moles of ammonium carbonate}=\frac{6.935g}{96.1g/mol}=0.07216mol[/tex]
Hence, the moles of ammonium carbonate is 0.07216 moles
- For C:
We are given:
Number of aspirin molecules = [tex]1.20\times 10^{21}[/tex]
Mass of 1 mole of aspirin = 180.16 g/mol
According to mole concept:
[tex]6.022\times 10^{23}[/tex] number of molecules occupies 1 mole
So, [tex]6.022\times 10^{23}[/tex] number of molecules of aspirin has a mass of 180.16 grams
Thus, [tex]1.20\times 10^{21}[/tex] number of molecules of aspirin will have a mass of [tex]\frac{180.16g}{6.022\times 10^{23}}\times 1.20\times 10^{21}=0.359g[/tex]
Hence, the mass of given number of molecules of aspirin is 0.359 grams.
- For D:
We are given:
Moles of diazepam = 0.05570 mol
Given mass of diazepam = 15.86 g
Putting values in equation 1, we get:
[tex]0.05570mol=\frac{15.86g}{\text{Molar mass of diazepam}}\\\\\text{Molar mass of diazepam}=\frac{15.86g}{0.05570mol}=284.7g/mol[/tex]
Hence, the molar mass of diazepam is 284.7 g/mol