Respuesta :

Answer:

The inverse will be:

[tex]y' = \frac{\sqrt{x+4}}{3}[/tex]

Step-by-step explanation:

In order to find the inverse of the equation, we do a variable change, since we are finding the inverse, :

[tex]f(x)  = 9x^{2} - 4[/tex]

[tex]y = 9x^{2} - 4[/tex]

[tex]x = 9y' ^{2} - 4[/tex]

Now solve for y'.

First add 4 in both sides of the equation and change to the left y'.

[tex]x + 4= 9y'^{2} - 4+4[/tex]

[tex]9y'^{2}[/tex] = x + 4

Second divide by 9

[tex]9y'^{2}[/tex]/9 = (x + 4)/9

[tex]y'^{2}[/tex] = (x + 4)/9

Now you will have to clear y, with the square root.

[tex][tex]y'^{\frac{2}{2}} = \sqrt{x + 4}  / \sqrt{9}[/tex][/tex] =

Simplifying terms

[tex]y' = \frac{\sqrt{x+4}}{3}[/tex]

[tex]f^{-1}(x)  = \frac{\sqrt{x+4}}{3}[/tex]

You can check the answer by doing the evaluation of the following equation:

(f o [tex]f^{-1}[/tex] ) (x)

substitute the equation for y' or inverse function [tex]f^{-1}[/tex]

f([tex]\frac{\sqrt{x+4} }{3}[/tex])

Now substitue the value into f(x)

You will have

[tex]= 9(\frac{\sqrt{x+4} }{3}} )^{2}  - 4\\\\Solving\\\\9(\frac{{x+4} }{9}} )  - 4[/tex]

=x

Q&A Education