Respuesta :

Answer:

[tex]\Huge\boxed{\mathsf{\Rightarrow \sqrt{205}}}}[/tex]

Step-by-step explanation:

TO FIND:

The distance between the give points of (-16, -15) and (-2, -18).

SOLUTIONS:

First, use slope formula.

SLOPE FORMULA:

[tex]\Rightarrow \displaystyle \mathsf{\frac{Y_2-Y_1}{X_2-X_1} }}[/tex]

[tex]\Rightarrow \displaystyle \mathsf{\sqrt{(X_2-X_1)^2+(Y_2-Y_1)^2}}}[/tex]

[tex]\displaystyle \mathsf{\sqrt{\left(-2-\left(-16\right)\right)^2+\left(-18-\left(-15\right)\right)^2}}}[/tex]

Solve.

[tex]\displaystyle \mathsf{\sqrt{\left(-2+16\right)^2+\left(-18+15\right)^2}}}[/tex]

Add & subtract the numbers from left to right.

[tex]\displaystyle \mathsf{(-2+16)^2}}[/tex]

[tex]\displaystyle \mathsf{-2+16=14}}[/tex]

[tex]\displaystyle \mathsf{14^2}}[/tex]

[tex]\displaystyle \mathsf{(-18+15)^2}}[/tex]

[tex]\displaystyle \mathsf{-18+15=3}}[/tex]

[tex]\displaystyle \mathsf{=3^2}}[/tex]

[tex]\displaystyle \mathsf{\sqrt{14^2+3^2}}}[/tex]

Solve by exponent.

14²=14*14=196

√196+3²

3²=3*3=9

√196+9

Add.

√196+9=205

√205

[tex]\Large\boxed{\mathsf{\Rightarrow \sqrt{205}}}}[/tex]

So, the correct answer is √205.

Q&A Education