Answer:
[tex]\Huge\boxed{\mathsf{\Rightarrow X<\frac{33}{4}=8.25 }}[/tex]
Step-by-step explanation:
To solve this problem, first, you have to isolate x on one side of the equation.
First, subtract 35 from both sides.
[tex]\displaystyle \mathsf{-4x+35-35>2-35}[/tex]
Solve.
[tex]\displaystyle \mathsf{2-35=-33}}[/tex]
[tex]\displaystyle \mathsf{-4x>-33}[/tex]
Next, multiply -1 from both sides.
[tex]\displaystyle \mathsf{(-4x)(-1)<(-33)(-1)}}[/tex]
Solve.
Multiply the numbers from left to right.
[tex]\displaystyle \mathsf{(-33)*(-1)=33}}[/tex]
[tex]\displaystyle \mathsf{4x<33}}[/tex]
Then, divide by 4 from both sides.
[tex]\displaystyle \mathsf{\frac{4x}{4}<\frac{33}{4}}}[/tex]
Solve.
Divide the numbers from left to right.
[tex]\displaystyle \mathsf{33\div4=8.25}}[/tex]
[tex]\Large\boxed{\mathsf{\longrightarrow \boxed{\mathsf{X<\frac{33}{4}=8.25 }}}}}}[/tex]
Therefore, the final answer is x<33/4=8.25.