You are riding on a roller coaster that starts from rest at a height of 25.0 m and moves down a frictionless track to a height of 3.00 m. How fast are you moving when you arrive at the 3.00-m height?

Respuesta :

Answer: 20.765 m/s

Explanation:

This problem can be solved by the conservation of energy principle, this means the initial energy [tex]E_{o}[/tex] must be equal to the final energy  [tex]E_{f}[/tex]:

[tex]E_{o}=E_{f}[/tex] (1)

Where each energy is the sum of kinetic energy [tex]K[/tex] and potential energy [tex]U[/tex]:

[tex]K_{o}+U_{o}=K_{f}+U_{f}[/tex] (2)

Where:

[tex]K_{o}=\frac{1}{2}mV_{o}^{2}[/tex]

Being [tex]m[/tex] your mass and [tex]V_{o}=0 m/s[/tex] your initial velocity, since the roller coaster sterted from rest.

[tex]U_{o}=mgh_{o}[/tex]

Being  [tex]g=9.8 m/s^{2}[/tex] the acceleration due gravity and  [tex]h_{o}=25 m[/tex] your initial height

[tex]K_{f}=\frac{1}{2}mV_{f}^{2}[/tex]

Being [tex]V_{f}[/tex] your final velocity

[tex]U_{f}=mgh_{f}[/tex]

Being [tex]h_{f}=3 m[/tex] your final height

Rewritting (2):

[tex]\frac{1}{2}mV_{o}^{2}+mgh_{o}=\frac{1}{2}mV_{f}^{2}+mgh_{f}[/tex] (3)

[tex]mgh_{o}=m(\frac{1}{2}V_{f}^{2}+gh_{f})[/tex] (4)

Isolating [tex]V_{f}[/tex]:

[tex]V_{f}=\sqrt{2g(h_{o}-h_{f})}[/tex] (5)

[tex]V_{f}=\sqrt{2(9.8 m/s^{2})(25 m-3 m)}[/tex] (6)

Finally:

[tex]V_{f}=20.765 m/s[/tex] This is your spedd when you arrive at 3 m height

Q&A Education