Yasmine needs to create invitations for the party. She has 3/4 of an hour to make the invitations. It takes her 1/12 of an hour to make each card. How many invitations can Yasmine create?
a. Use a number line to represent the quotient.
b. Draw a model to represent the quotient.
c. Compute the quotient without models. Show your work.

Respuesta :

Answer:

Here, the given problem,

The total number of hours = [tex]\frac{3}{4}[/tex]

Now, the number of hours to make each invitation card = [tex]\frac{1}{12}[/tex]

Hence, the total number of invitations = [tex]\text{Total hours}\div \text{Hours needed for an invitation }[/tex]

[tex]=\frac{3}{4}\div \frac{1}{12}[/tex]

a. Scale the number line from 0 to 1,

In which each unit represents [tex]\frac{1}{12}[/tex]

By the number line,

[tex]\frac{9}{12}\div \frac{1}{12}[/tex]

[tex]=9[/tex]

b. By model,

Take a grid which shows 1 hour and each box of the grid represents 1/12th hour,

By the grid,

[tex]\frac{3}{4}\text{ part of grid}=\frac{9}{12}[/tex]

[tex]=\frac{3}{4}\div \frac{1}{12}=9[/tex]

That is, the number of hours to make invitation = 9

c. [tex]\frac{3}{4}\div \frac{1}{12}[/tex]

[tex]\frac{3}{4}\times 12=3\times 3=9[/tex]

Ver imagen slicergiza
Q&A Education