Answer:
Option A - [tex]-\frac{5}{6}(x-\frac{1}{2}y+12)=-\frac{5}{6}x+\frac{5}{12}y-10[/tex]
Step-by-step explanation:
Given : Expression [tex]-\frac{5}{6}(x-\frac{1}{2}y+12)[/tex]
To find : Which expression is equivalent to given expression ?
Solution :
Expression [tex]-\frac{5}{6}(x-\frac{1}{2}y+12)[/tex]
Applying distributive property, [tex]a(b+c)=ab+ac[/tex]
[tex]-\frac{5}{6}(x-\frac{1}{2}y+12)=-\frac{5}{6}x-(-\frac{5}{6})(\frac{1}{2}y)+(-\frac{5}{6})(12)[/tex]
[tex]-\frac{5}{6}(x-\frac{1}{2}y+12)=-\frac{5}{6}x+\frac{5}{12}y-10[/tex]
Therefore, option A is correct.