Answer:
Explanation:
Given data:
[tex]T∞ =29.6 degree\ celcius[/tex]
[tex]H∞ = 5 w/m^2 -degree C[/tex]
[tex]T_s = 35 degree \celcius[/tex]
[tex]T_i = 444 degree \celcius[/tex]
Total stiffness resistance can be calculated as
[tex]\theta = \frac{Ts -T\infty}{\frac{1}{H\infty A}} =\frac{T_i - T\infty }{\frac{R}{A}}[/tex]
[tex](35- 29.6) 5 = \frac{444- 29.6}{R}[/tex]
[tex]27\times R = 414.4[/tex]
Solving for R we get
R = 15.348 Degree C/W