At a critical point in a steel part of a machine, the stress components found were σxx = 100 MPa, σyy = −50 MPa and σxy = 30 MPa. Assuming the point is in state stress plane, and the material yield stress to be 160 MPa, determine whether the fails according to the criteria: (a) the maximum shear stress (Tresca). (b) the maximum deformation energy (von Mises).

Respuesta :

Answer

given,

σ x x = 100 MPa

σ y y = −50 MPa

σ x y = 30 MPa

σy     = 160 MPa

using principal stress formula

[tex]\sigma = \dfrac{\sigma_x+\sigma_y}{2}\pm \sqrt{ (\dfrac{\sigma_x-\sigma_y}{2})^2+\tau^2}[/tex]

[tex]\sigma = \dfrac{100-50}{2}\pm \sqrt{ (\dfrac{100+50}{2})^2+30^2}[/tex]

[tex]\sigma = 25\pm80.77[/tex]

[tex]\sigma_{max} = 105.77 MPa[/tex]

[tex]\sigma_{min} = 55.77 MPa[/tex]

a) |σ₁ - σ₂| = σ f

|105.77 - 55.77| = σ f

σ_f = 50 MPa

b)[tex]\sigma_y=\sqrt{\sigma_1^2+\sigma^2_2-\sigma_1\times \sigma_2}[/tex]

[tex]\sigma_y=\sqrt{105.77^2+55.77^2-105.77\times 55.77}[/tex]

[tex]\sigma_y = 91.65 MPa[/tex]

Q&A Education