Respuesta :
[tex]\bf \begin{array}{ccll} loads&tons\\ \cline{1-2} 4&\frac{2}{3}\\\\ 1&x \end{array}\implies \cfrac{4}{1}=\cfrac{~~\frac{2}{3}~~}{x}\implies 4=\cfrac{~~\frac{2}{3}~~}{\frac{x}{1}}\implies 4=\cfrac{2}{3}\cdot \cfrac{1}{x} \\\\\\ 4=\cfrac{2}{3x}\implies 12x=2\implies x=\cfrac{2}{12}\implies x=\cfrac{1}{6}[/tex]
For this case we propose a rule of three:
4 loads of stone -------------> [tex]\frac {2} {3}[/tex] ton
1 load of stone ---------------> x
Where:
x: Represents the weight of a stone load. So:
[tex]x = \frac {1 * \frac {2} {3}} {4}\\x = \frac {\frac {2} {3}} {4}\\x = \frac {2} {12}\\x = \frac {1} {6}[/tex]
Finally, the weight of a stone load is[tex]\frac {1} {6}[/tex]of one ton
ANswer:
[tex]\frac {1} {6}[/tex]of one ton