Answer:
6 moles of C are produced per minute
Explanation:
According to law of mass action for the given reaction-
Rate = [tex]-\frac{1}{2}\frac{\Delta [A]}{\Delta t}=-\frac{1}{2}\frac{\Delta [B]}{\Delta t}=\frac{1}{4}\frac{\Delta [c]}{\Delta t}[/tex]
Where [tex]-\frac{\Delta [A]}{\Delta t}[/tex] represents rate of consumption of A and [tex]\frac{\Delta [C]}{\Delta t}[/tex] represents rate of production of C
Here [tex]-\frac{\Delta [A]}{\Delta t}[/tex] = 3 moles/min
So, [tex]\frac{\Delta [C]}{\Delta t}[/tex] = [tex]\frac{4}{2}\times -\frac{\Delta [A]}{\Delta t}[/tex]
So, [tex]\frac{\Delta [C]}{\Delta t}[/tex] = [tex]\frac{4}{2}\times (3 moles/min)[/tex]
So, [tex]\frac{\Delta [C]}{\Delta t}[/tex] = 6 moles/min