Answer:
Explanation:
[tex]\overrightarrow{V}=-36\widehat{i}+29\widehat{j}[/tex]
Let the given vector makes an angle θ from positive X axis
[tex]tan\theta =\frac{vertical component}{horizontal component}=\frac {29}{-36}[/tex]
tanθ = -0.8055
θ = -38.85° from + X axis, i.e. 321.15° from + X axis in counter clock wise direction
Angle made from + y axis = 321.15° - 90° = 231.15°
Magnitude of V = [tex]\sqrt{\left ( -36 \right )^{2}+\left ( 29 \right )^{2}=46.23[/tex]
The unit vector in the direction of V is given by
[tex]\widehat{n}=\frac {\overrightarrow{V}}{V}[/tex]
[tex]\widehat{n}=\frac{-36\widehat{i}+29\widehat{j}}{46.23}[/tex]