Answer:
The value of R is [tex]1.72\times10^{11}\ m[/tex].
(B) is correct option.
Explanation:
Given that,
In analyzing distances by apply ing the physics of gravitational forces, an astronomer has obtained the expression
[tex]R=\sqrt{\dfrac{1}{(\dfrac{1}{140\times10^{9}})^2-(\dfrac{1}{208\times10^{9}})^2}}[/tex]
We need to calculate this for value of R
[tex]R=\sqrt{\dfrac{1}{(\dfrac{1}{140\times10^{9}})^2-(\dfrac{1}{208\times10^{9}})^2}}[/tex]
[tex]R=1.89\times10^{11}\ m[/tex]
So, The nearest option of the value of R is [tex]1.72\times10^{11}\ m[/tex]
Hence, The value of R is [tex]1.72\times10^{11}\ m[/tex].