In triangle ABC, AC =12, the measure of angle A = 30, and the measure of angle B = 45. Find the area of this triangle. (Hint: Draw a picture and include the altitude from vertex C to the side AB.)

(A) 18√3
(B) 54√ 3
(C) 18(1 + √ 3)
(D) 54(1 + √ 3)
(E) 12(1 + √ 3)
(F) none of the above

Respuesta :

Answer:

(C) 18(1 + √ 3)

Step-by-step explanation:

Given,

In triangle ABC,

AC = 12  unit,

m∠A = 30°,

m∠B = 45°,

Let D∈AB such that CD ⊥ AB,

In triangle ADC,

[tex]sin A = \frac{CD}{AC}[/tex]

[tex]sin 30^{\circ}=\frac{CD}{12}[/tex]

[tex]\frac{1}{2}=\frac{CD}{12}[/tex]

[tex]\implies CD=6\text{ unit}[/tex],

By the pythagorean theorem,

[tex]AC^2=CD^2+AD^2\implies 144 = 36 + AD^2\implies 108=AD^2\implies AD=6\sqrt{3}\text{ unit}[/tex]

Now, in triangle CDB,

[tex]tan 45^{\circ}=\frac{CD}{DB}[/tex]

[tex]1=\frac{6}{DB}\implies DB=6\text{ unit}[/tex]

[tex]AB=AD+DB=6\sqrt{3}+6=6(\sqrt{3}+1)\text{ unit}[/tex]

Hence, the area of the triangle ABC = [tex]\frac{1}{2}\times AB\times CD[/tex]

[tex]=\frac{1}{2}\times 6(\sqrt{3}+1)\times 6[/tex]

[tex]=18(\sqrt{3}+1)\text{ square unit}[/tex]

Option 'C' is correct.

Ver imagen slicergiza
Q&A Education