In a study of the length of time that students require to earn bachelor’s degrees, 60 students are randomly selected and they are found to have a sample mean of 4.8 years and a sample standard deviation of 2.2 years, construct a 95% confidence interval estimate of the population mean.

Respuesta :

Answer:    [tex](4.24,\ 5.36 )[/tex]

Step-by-step explanation:

The  confidence interval to estimate the population mean is given by :_

[tex]\overline{x}\ \pm\ z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex]

Given : Sample size : n= 60 , the sample is a large sample (n>30), so we can apply z-test.

Sample mean = [tex]\overline{x}=4.8[/tex]

Standard deviation : [tex]\sigma=2.2[/tex]

Level of confidence:[tex]1-\alpha=0.95[/tex]

[tex]\Rightarrow\ \alpha=0.05[/tex]

Then, critical z-value =[tex]z_{\alpha/2}=1.96[/tex]

Then, a 95% confidence interval estimate of the population mean will be

[tex]=4.8\ \pm\ (1.96)\dfrac{2.2}{\sqrt{60}}\\\\=4.8\pm0.56=(4.8-11.76, 4.8+11.76)=(4.24,\ 5.36 )[/tex]

Hence, the  95% confidence interval to estimate the population mean = [tex](4.24,\ 5.36 )[/tex].

Q&A Education