Answer:
[tex]pK_{a}[/tex] of HA is 6.80
Explanation:
[tex]pK_{a}=-logK_{a}[/tex]
Acid dissociation constant ([tex]K_{a}[/tex]) of HA is represented as-
[tex]K_{a}=\frac{[H^{+}][A^{-}]}{[HA]}[/tex]
Where species inside third bracket represents equilibrium concentrations
Now, plug in all the given equilibrium concentration into above equation-
[tex]K_{a}=\frac{(2.00\times 10^{-4})\times (2.00\times 10^{-4})}{0.250}[/tex]
So, [tex]K_{a}=1.6\times 10^{-7}[/tex]
Hence [tex]pK_{a}=-log(1.6\times 10^{-7})=6.80[/tex]