Line segment AB is given by the coordinates A (-4, 16) and B (-4, 32). Find the two sets of coordinates that could partition this segment in the ratio 3:1 or 1:3.

Respuesta :

Answer:

The required sets of coordinates are (-4,28) and (-4,20).

Step-by-step explanation:

Given information: A (-4, 16) and B (-4, 32).

Section formula:

If end point of a line segment are [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] and a point divides that line segment in m:n, then the coordinates of that point are

[tex](\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n})[/tex]

If a point divides AB in 3:1, then coordinates of that point are

[tex](\frac{(3)(-4)+(1)(-4)}{3+1},\frac{(3)(32)+(1)(16)}{3+1})[/tex]

[tex](\frac{-12-4}{4},\frac{96+16}{4})[/tex]

[tex](\frac{-16}{4},\frac{112}{4})[/tex]

[tex](-4,28)[/tex]

If a point divides AB in 1:3, then coordinates of that point are

[tex](\frac{(1)(-4)+(3)(-4)}{1+3},\frac{(1)(32)+(3)(16)}{1+3})[/tex]

[tex](\frac{-4-12}{4},\frac{32+48}{4})[/tex]

[tex](\frac{-16}{4},\frac{80}{4})[/tex]

[tex](-4,20)[/tex]

Therefore the required sets of coordinates are (-4,28) and (-4,20).

Q&A Education