Respuesta :
Answer:
I can confirm it's A
[tex]15000 \leqslant 12000 + 4( \frac{15000}{x} ) \leqslant 20000[/tex]
Step-by-step explanation:
E2020
The gas mileage illustrates compound and linear inequalities.
The compound inequality is (a) [tex]\mathbf{15000 \le 12000 + 4 \times \frac{15000}{x} \le 20000}[/tex]
The budget is given as: an amount between $15,000 and $20,000
The initial amount is given as:
[tex]\mathbf{Initial = \$12000}[/tex]
[tex]\mathbf{Rate = \$4\ per\ gallon}\\[/tex]
[tex]\mathbf{Max = 15000\ miles}[/tex]
Let x represent the gas mileage.
So, the cost function is:
[tex]\mathbf{C(x) = Initial + Rate \times \frac{Max}{x}}[/tex]
This gives
[tex]\mathbf{C(x) = 12000 + 4 \times \frac{15000}{x}}[/tex]
The cost is between $15000 and $20000.
So, we have:
[tex]\mathbf{15000 \le 12000 + 4 \times \frac{15000}{x} \le 20000}[/tex]
Hence, the compound inequality is (a) [tex]\mathbf{15000 \le 12000 + 4 \times \frac{15000}{x} \le 20000}[/tex]
Read more about compound linear inequalities at:
https://brainly.com/question/2293190