If a rock is thrown upward on the planet Mars with a velocity of , its height in meters t seconds later is given by y=10t-1.86t^2 . Find the average velocity over the given time intervals:

Respuesta :

(a). The average speed of the particle in the interval [tex][1,2][/tex] is [tex]\boxed{4.42\text{ m/s}}[/tex].

(b). The average speed of the particle in the interval [tex][1,1.5][/tex] is [tex]\boxed{5.35\text{ m/s}}[/tex].

Further Explanation:

The position of the particle on the surface of mars is given by:

[tex]y=10t-1.86t^2[/tex].

The average speed of the particle is given as:

[tex]v_{avg}=\dfrac{\text{distance covered in the interval}}{\text{time taken in the inetrval}}[/tex]

Part (a):

The average speed of the particle in the interval [tex]\bf[1,2][/tex],

[tex]v_{avg}=\dfrac{y(2)-y(1)}{2-1}[/tex]

Now,

[tex]\begin{aligned}y(2)&=10(2)-1.86(2^2)\\&=12.56\end{aligned}[/tex]

[tex]\begin{aligned}y(1)&=10(1)-1.86(1^2)\\&=8.14\end{aligned}[/tex]

Substitute the values in above expression of [tex]v_{avg}[/tex]:

[tex]\begin{aligned}v_{avg}&=\dfrac{12.56-8.14}{2-1}\\&=\dfrac{4.42}{1}\\&=4.42\text{ m/s}\end{aligned}[/tex]

So, the average speed of the particle in the interval [tex][1,2][/tex] is [tex]\boxed{4.42\text{ m/s}}[/tex].

Part (b):

The average speed of the particle in the interval [tex]\bf[1,1.5][/tex],

[tex]v_{avg}=\dfrac{y(1.5)-y(1)}{1.5-1}[/tex]

Now,

[tex]\begin{aligned}y(1.5)&=10(1.5)-1.86(1.5^2)\\&=10.815\end{aligned}[/tex]

[tex]\begin{aligned}y(1)&=10(1)-1.86(1^2)\\&=8.14\end{aligned}[/tex]

Substitute the values in above expression of [tex]v_{avg}[/tex]:

[tex]\begin{aligned}v_{avg}&=\dfrac{10.815-8.14}{1.5-1}\\&=\dfrac{2.675}{0.5}\\&=5.35\text{ m/s}\end{aligned}[/tex]

So, the average speed of the particle in the interval [tex][1,1.5][/tex] is [tex]\boxed{5.35\text{ m/s}}[/tex].

Q&A Education