Segment CD has endpoints (-4, 3) and (8, -1). Find the coordinates of the point that divides the line segment directed from C to D in the ratio of 2:3. A) ( -6 5 , 26 5 ) B) ( -4 5 , 7 5 ) C) ( 1 5 , 13 5 ) D) ( 16 5 , 3 5 )

Respuesta :

frika

Answer:

[tex]A(0.8,\ 1.4)\ \text{or }\ A\left(\dfrac{4}{5},\dfrac{7}{5}\right)[/tex]

Step-by-step explanation:

If point [tex]A(x,y)[/tex] divides the segment with endpoints  [tex]C(x_1,y_1)[/tex] and [tex]D(x_2,y_2)[/tex] in the ratio [tex]m:n,[/tex]

then

[tex]x=\dfrac{nx_1+mx_2}{m+n}\\ \\y=\dfrac{ny_1+my_2}{m+n}[/tex]

In your case,

[tex]C(-4,3)\\ \\D(8,-1)\\ \\m:n=2:3[/tex]

then

[tex]x=\dfrac{3\cdot (-4)+2\cdot 8}{2+3}=\dfrac{-12+16}{5}=\dfrac{4}{5}=0.8\\ \\y=\dfrac{3\cdot 3+2\cdot (-1)}{2+3}=\dfrac{9-2}{5}=\dfrac{7}{5}=1.4[/tex]

Thus,

[tex]A(0.8,\ 1.4)\ \text{or }\ A\left(\dfrac{4}{5},\dfrac{7}{5}\right)[/tex]

Q&A Education