Answer:
[tex]\bar{Y} = 17.2667[/tex]
[tex]S_y^2 = 3.8626[/tex]
[tex]MAD = 8.6778[/tex]
[tex]SME = 535.3322[/tex]
Step-by-step explanation:
The sample mean for a finite set of values is given by:
[tex]\bar{Y} = \frac{1}{n} \sum{y_i} = 17.2667[/tex]
The standard deviation for a finite set of values is given by:
[tex]S_y^2 = \frac{1}{n-1} \sum (y_i - \bar{y})^2 = 3.8626[/tex]
The MAD for a set of predicted values is given by:
[tex]MAD = \frac{1}{n}\sum|y_{predicted} - y_{real}| = 8.6778[/tex]
The MSE for a set of predicted values is given by:
[tex]SME = \frac{1}{n}\sum(y_{predicted} - y_{real})^2 = 535.3322[/tex]