Answer: The required values are
f(-2) = 120, f(0) = 64 and f(1) = 84.
Step-by-step explanation: We are given the following function f(x) :
[tex]f(x)=16x^2+4x+64~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]
We are to find the values of the following :
[tex](a)~f(-2),\\\\(b)~f(0),\\\\(c)~f(1).[/tex]
To find the values of the function at the given points, we need to substitute the corresponding values of x in equation (i).
Substituting x = -2 in equation (i), we get
[tex]f(-2)=16\times(-2)^2+4\times(-2)+64=64-8+64=120.[/tex]
Substituting x = 0 in equation (i), we get
[tex]f(0)=16\times0^2+4\times0+64=0+0+64=64.[/tex]
Substituting x = 1 in equation (i), we get
[tex]f(1)=16\times1^2+4\times1+64=16+4+64=84.[/tex]
Thus, the required values are
f(-2) = 120, f(0) = 64 and f(1) = 84.