If r and s are vectors that depend on time, prove that the product rule for differentiating products applies to r.s, that is, that d/dt (r.s) = r· ds/dt + dr/dt ·s.

Respuesta :

Proof:

Let us assume [tex]y=r\cdot s[/tex]

Taking log on both sides we get

 [tex]ln(y)=ln(r)+ln(s)[/tex]

[tex]\because ln(a\cdot b)=ln(a)+ln(b)[/tex]

Now differentiating on both sides and noting that [tex]d(ln(y))=\frac{1}{y}\cdot y'[/tex] we get

[tex]\frac{1}{y}\cdot y'=\frac{1}{r}\cdot r'+\frac{1}{s}\cdot s'\\\\\therefore y'=\frac{y}{r}\cdot r'+\frac{y}{s}\cdot s'\\\\y'=\frac{rs}{r}\cdot r'+\frac{rs}{s}\cdot s'\\\\\therefore y'=s\cdot r'+r\cdot s'\\\\\frac{d(rs)}{dt}=s\times \frac{dr}{dt}+r\times \frac{ds}{dt}[/tex]

Q&A Education