Use the equation a = IaIâ
to express each of the following vectors as the product of its magnitude and (unit vector) direction. (Your instructors prefer angle bracket notation < > for vectors.)
(a) (2, 1, -3)
(b) 2i - 3j + 4k
(c) the sum of (1, 2, -3) and (2, 4, 1)

Respuesta :

Answer:

a) [tex]\:<\:2,1,-3\:>\:=\sqrt{14}\cdot \frac{\:<\:2,1,-3\:>\:}{\sqrt{14} }[/tex]

b)[tex]\:<\:2,-3,4\:>\:=\sqrt{29} \cdot \frac{\:<\:2,-3,4\:>\:}{\sqrt{29} }[/tex]

c) [tex]\:<\:3,6,-2\:>\:=7\cdot \frac{\:<\:3,6,-2\:>\:}{7}[/tex]

Step-by-step explanation:

a) Let a=<2,1,-3>

The magnitude of a is [tex]|a|=\sqrt{2^2+1^2+(-3)^2}[/tex]

[tex]|a|=\sqrt{4+1+9}=\sqrt{14}[/tex]

The unit vector in the direction of a is

[tex]\hat{a}=\frac{\:<\:2,1,-3\:>\:}{\sqrt{14} }[/tex]

Using the relation [tex]a=|a|\hat{a}[/tex], we have

[tex]\:<\:2,1,-3\:>\:=\sqrt{14}\cdot \frac{\:<\:2,1,-3\:>\:}{\sqrt{14} }[/tex]

b) Let a=2i - 3j + 4k

[tex]|a|=\sqrt{2^2+(-3)^2+4^2}[/tex]

[tex]|a|=\sqrt{4+9+16}=\sqrt{29}[/tex]

[tex]\hat{a}=\frac{\:<\:2,-3,4\:>\:}{\sqrt{29} }[/tex]

Using the relation [tex]a=|a|\hat{a}[/tex], we have

[tex]\:<\:2,-3,4\:>\:=\sqrt{29} \cdot \frac{\:<\:2,-3,4\:>\:}{\sqrt{29} }[/tex]

c) Let us first find the sum of <1, 2, -3> and <2, 4, 1> to get:

<1+2, 2+4, -3+1>=<3, 6, -2>

Let a=<3, 6, -2>

The magnitude is

[tex]|a|=\sqrt{3^2+6^2+(-2)^2}[/tex]

[tex]|a|=\sqrt{9+36+4}=\sqrt{49}=7[/tex]

The unit vector in the direction of a is

[tex]\hat{a}=\frac{\:<\:3,6,-2\:>\:}{7}[/tex]

Using the relation [tex]a=|a|\hat{a}[/tex], we have

[tex]\:<\:3,6,-2\:>\:=7\cdot \frac{\:<\:3,6,-2\:>\:}{7}[/tex]

Q&A Education