Answer:
Current Market value of the stock at 8.5% return: 105.88
Explanation:
We will calculate the present value of the dividends:
[tex]\left[\begin{array}{ccc}Year&Cash \: Flow&PV\\
1&1.722&1.59\\
2&2.12&1.8\\
3&2.61&2.04\\
4&3.21&2.32\\
5&3.40&98.13\\
&&105.88\\
\\\end{array}\right][/tex]
We will do the following:
each dividends we multiply by the previous, by the grow rate of 23%
D1 1.40 x ( 1 + 23%) = D2 = 1.722
D2 1.722 x ( 1 + 23%) = D3 = 2.12
...
Then after the four years we calculate the gordon model for the infinite series of dividends
[tex]\frac{divends}{return-growth} = Intrinsic \: Value[/tex]
3.95/(0.085-0.06) = 158
Then calculate the present of each dividends applying the present value of a lump sum
[tex]\frac{Principal}{(1 + rate)^{time} } = PV[/tex]
[tex]\frac{1.722}{(1 + 0.085)^{1} } = PV_{div1}[/tex]
PV div1 = 1.59
[tex]\frac{2.12}{(1 + 0.085)^{2} } = PV_{div2}[/tex]
PV div2 = 1.8
[tex]\frac{2.61}{(1 + 0.085)^{3} } = PV_{div3}[/tex]
PV div3 = 2.04
...
Then we add them and get the present value of the stock