Answer:
9.61 m
Explanation:
d1 = 8 m north
d2 = 1 m north west
d3 = 1 m vertically down
Write the displacements in vector form
[tex]\overrightarrow{d_{1}}=8\widehat{j}m[/tex]
[tex]\overrightarrow{d_{2}}=1 \left ( -Cos45\widehat{i}+Sin45\widehat{j} \right )m[/tex]
[tex]\overrightarrow{d_{2}}=\left ( -0.707\widehat{i}+0.707\widehat{j} \right )m[/tex]
[tex]\overrightarrow{d_{3}}=-1\widehat{k}m[/tex]
The resultant displacement is given by
[tex]\overrightarrow{d}=\overrightarrow{d_{1}}+ \overrightarrow{d_{2}} +\overrightarrow{d_{3}}[/tex]
[tex]\overrightarrow{d}=-0.707\widehat{i}+ 8.707\widehat{j} - 4\widehat{k}m[/tex]
The magnitude of displacement is given by
d =
[tex]\sqrt{\left ( -0.707 \right )^{2}+\left ( 8.707 \right )^{2}+\left ( -4 \right )^{2}}[/tex]
d = 9.61 m