Find the length of the arc, s, on a circle of radius r intercepted by a central angle θ. Express arc length in terms of π. Then round your answer to two decimal places.
Radius, r = 12 feet; Central angle, θ = 275

Respuesta :

Answer:

[tex]s=\frac{275}{180}*\pi*12 \; ft\\\\s=57.60 \;ft[/tex]

Step-by-step explanation:

First, is necessary to convert the central angle[tex]\theta[/tex] of degrees to  radians

[tex]\theta [rad]=\frac{275}{180}*\pi= 1.53 \;rad[/tex]

Then, the arc length can be calculated by multiply Central angle  [tex]\theta[/tex] (in rad units) with the circle radius r:

[tex]s=\theta*r[/tex]

Replacing the values for [tex]\theta[/tex] and r:

[tex]s=1.53*\pi*12 \; ft\\\\s=57.60 \;ft[/tex]

Q&A Education