Respuesta :
Let [tex]t[/tex] be the side of the triangle and [tex]s[/tex] be the side of the square.
Let [tex]P_t[/tex] be the perimeter of the triangle and [tex]P_s[/tex] be the perimeter of the square.
We have the following relationship:
[tex]\begin{cases}P_t = P_s+7\\t=s+5\\P_t = 3t\\P_s=4s\end{cases} \implies \begin{cases}3t=4s+7\\t=s+5\end{cases} \implies 3(s+5)=4s+7 \implies s=8[/tex]
Which finally implies
[tex]t=s+5=13[/tex]
Answer:
Side of triangle = 13 inches
Step-by-step explanation:
Let side of square be x inches.
Perimeter of square = 4*side = 4x --------->1
side of triangle = x+5 { the side of the triangle is 5 inches more than the side of the square. }
Perimeter of triangle = 3*side
= 3 * (x+5) =3x + 15 -------->2
The perimeter of an equilateral triangle is 7 inches more than perimeter of a square.
3x + 15 - 4x = 7
3x -4x = 7-15
-x = - 8
x= 8
Side of a square = 8 inches.
Side of triangle = x + 5 = 8 + 5 = 13 inches