Answer: 154.08 m/s
Explanation:
Average acceleration [tex]a_{ave}[/tex] is the variation of velocity [tex]\Delta V[/tex] over a specified period of time [tex]\Delta t[/tex]:
[tex]a_{ave}=\frac{\Delta V}{\Delta t}}[/tex]
Where:
[tex]a_{ave}=1.80 m/s^{2}[/tex]
[tex]\Delta V=V_{f}-V_{o}[/tex] being [tex]V_{o}=0[/tex] the initial velocity and [tex]V_{f}[/tex] the final velocity
[tex]\Delta t=85.6 s[/tex]
Then:
[tex]a_{ave}=\frac{V_{f}-V_{o}}{\Delta t}}[/tex]
Since [tex]V_{o}=0[/tex]:
[tex]a_{ave}=\frac{V_{f}}{\Delta t}}[/tex]
Finding [tex]V_{f}[/tex]:
[tex]V_{f}=a_{ave} \Delta t[/tex]
[tex]V_{f}=(1.80 m/s^{2})(85.6 s)[/tex]
Finally:
[tex]V_{f}=154.08 m/s[/tex]