Respuesta :

Answer:

-1/9

Step-by-step explanation:

[tex]\lim_{x \to 3} \frac{1/x-1/3}{x-3}[/tex]

For simplicity, let's multiply top and bottom by 3x:

[tex]\lim_{x \to 3} \frac{3-x}{3x(x-3)}[/tex]

Factor out a -1:

[tex]\lim_{x \to 3} \frac{-(x-3)}{3x(x-3)}[/tex]

Divide top and bottom by x−3:

[tex]\lim_{x \to 3} \frac{-1}{3x}[/tex]

Evaluate the limit:

[tex]\frac{-1}{3(3)}\\-\frac{1}{9}[/tex]

It's important to note that the function doesn't exist at x = 3.  As x approaches 3, the function approaches -1/9.

Q&A Education