A Ferris wheel with a radius of 10 m is rotating at a rate of one revolution every 2 minutes. How fast is a rider rising when his seat is 16 m above ground level?

Respuesta :

Answer:

The speed of rider is 8π m/min.

Explanation:

Given that

Radius = 10 m

Time t = 2 minutes

Distance = 16 m

According to figure,

Th height of rider at any time  is (x+10) m.

From the right triangle

[tex]\sin\theta=\dfrac{x}{10}[/tex].....(I)

Differentiate both side with respect to t

[tex]\dfrac{d(sin\theta)}{dt}=\dfrac{1}{10}\times\dfrac{dx}{dt}[/tex]

Using chain rule,

[tex]\dfrac{d(sin\theta)}{d\theta}\dfrac{d\theta}{dt}=\dfrac{1}{10}\times\dfrac{dx}{dt}[/tex]

[tex]\cos\theta\dfrac{d\theta}{dt}=\dfrac{1}{10}\times\dfrac{dx}{dt}[/tex]

[tex]\sqrt{1-\sin^2\theta}\dfrac{d\theta}{dt}=\dfrac{1}{10}\dfrac{dx}{dt}[/tex]...(II)

When the height of the rider is 16 m.

[tex]h = x+10[/tex]

[tex]16-10=x[/tex]

Then the value of x is 6 m.

Put the value of x in the equation (I)

[tex]\sin\theta=\dfrac{6}{10}[/tex]

[tex]\sin\theta=\dfrac{3}{5}[/tex]

We need to calculate the value of [tex]\dfrac{d\theta}{dt}[/tex]

A Ferry wheel makes 1 revolution per 2 minutes.

[tex]\dfrac{d\theta}{dt}=\dfrac{2\pi}{2}[/tex]

[tex]\dfrac{d\theta}{dt}=\pi\ rad/m[/tex]

Now, substitute the value of [tex]\sin\theta[/tex] and [tex]\dfrac{d\theta}{dt}[/tex] in equation (II)

[tex]\sqrt{1-(\dfrac{3}{5})^2}\times\pi=\dfrac{1}{10}\dfrac{dx}{dt}[/tex]

[tex]\sqrt{1-\dfrac{9}{25}}\times\pi=\dfrac{1}{10}\dfrac{dx}{dt}[/tex]

[tex]\dfrac{dx}{dt}=8\pi\ meter/minute[/tex]

Hence, The speed of rider is 8π m/min.

Ver imagen CarliReifsteck
Q&A Education