Answer:
Null hypothesis = [tex]H_0:\mu = 5000[/tex]
Alternate hypothesis= [tex]H_a:\mu \neq 5000[/tex]
We accept the null hypothesis
Step-by-step explanation:
Given : Claim: μ ≠ 5000; α =0.06. Sample statistics: x= 5100, s = 343, n = 50
To Find :test the claim about the population mean μ at the given level of significance using the given sample statistics. and identify the null and alternative hypotheses.
Solution:
Claim: μ ≠ 5000; α =0.06
So, Null hypothesis = [tex]H_0:\mu = 5000[/tex]
Alternate hypothesis= [tex]H_a:\mu \neq 5000[/tex]
Sample statistics: x= 5100, s = 343, n = 50
Since n > 30
So, we will use z test
[tex]z =\frac{x-\mu}{\frac{s}{\sqrt{n}}}[/tex]
Substitute the values
[tex]z =\frac{5100-5000}{\frac{343}{\sqrt{50}}}[/tex]
[tex]z =2.06[/tex]
refer the z value using z table
P(z) = 0.9803
So, p value is 0.9803
Since p value is greater than α
So, we accept the null hypothesis