The amount of lateral expansion (mils) was determined for a sample of n = 5 pulsed-power gas metal arc welds used in LNG ship containment tanks. The resulting sample standard deviation was s = 2.84 mils. Assuming normality, derive a 95% CI for σ2 and for σ. (Round your answers to two decimal places.)

Respuesta :

Answer: A 95 % confidence interval for [tex]\sigma^2[/tex] :-

[tex]2.90<\sigma^2<67.21[/tex]

A 95 % confidence interval for [tex]\sigma[/tex] :-

[tex]1.70<\sigma<8.20[/tex]

Step-by-step explanation:

Given : Sample size : [tex]n=5[/tex]

Standard deviation : [tex]\sigma : 2.84[/tex]

Significance level : [tex]\alpha=1-0.95=0.05[/tex]

We assume this is normal distribution

By using chi-square distribution, the critical value will be :-

[tex]\chi^2_{n-1,\alpha/2}=\chi^2_{4,0.025}=11.14[/tex]

[tex]\chi^2_{n-1,1-\alpha/2}=\chi^2_{4,0.975}=0.48[/tex]

The confidence interval for population variance:-

[tex]\dfrac{(n-1)s^2}{\chi^2_{n-1\alpha/2}}<\sigma^2<\dfrac{(n-1)s^2}{\chi^2_{n-1, 1-\alpha/2}}[/tex]

[tex]=\dfrac{(2.84)^2(4)}{11.14}<\sigma^2<\dfrac{(2.84)^2(4)}{0.48}\\\\\approx2.90<\sigma^2<67.21[/tex]

For standard deviation just take square root in the above inequality,

[tex]\sqrt{2.90}<\sigma^2<\sqrt{67.21}\\\\\approx1.70<\sigma<8.20[/tex]

Otras preguntas

Q&A Education